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Echolocating bats (sub-order: Microchiroptera) form a highly

successful group of animals, comprising approximately 700

species and an estimated 25% of living mammals. Many

echolocating bats are nocturnal predators that have evolved a

biological sonar system to orient and forage in three-dimensional

space. Acoustic signal processing and vocal-motor control are

tightly coupled, and successful echolocation depends on the

coordination between auditory and motor systems. Indeed,

echolocation involves adaptive changes in vocal production

patterns, which, in turn, constrain the acoustic information

arriving at the bat’s ears and the time-scales over which

neural computations take place.
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Abbreviations
3-D three-dimensional

ACC anterior cingulate cortex

BD best duration

BF best frequency

CF constant frequency

DNLL dorsal nucleus of the lateral lemniscus

EI binaural response profile created with excitatory/inhibitory

contralateral/ipsilateral inputs

FM frequency modulated

GABA g-amino butyric acid

IC inferior colliculus

ILD interaural level difference

PAG periaqueductal gray

PB parabrachial nucleus

PLa paralemniscal tegmentum area
PLS paradoxical latency shift

Introduction
The echolocating bat’s active sensing system supports

obstacle avoidance and foraging behavior in complete

darkness. It produces ultrasonic vocalizations and uses

information contained in the returning echoes to deter-

mine the position, size and other features of sonar targets

[1]. The timing, frequency content, duration and intensity

of sonar signals used by the bat to probe the environment

directly influence the information available to its acoustic

imaging system. In turn, the bat’s auditory representation

of the environment guides adaptive motor behaviors,

including adjustments of the pinna, head aim, flight path,

and the features of subsequent sonar vocalizations [2,3].

Echolocating bats exhibit tremendous diversity in the

suborder Microchiroptera, with species displaying adap-

tations to a broad range of habitats, from the desert to the

tropical rain forest [4]. Species-specific signal character-

istics are closely linked to the ecological conditions

encountered by foraging bats, and several schemes have

been proposed to categorize bats according to habitat and

sonar signal characteristics [5–9].

Each species of bat has a distinct repertoire of signals that

it uses for echolocation, and the features of these sounds

determine the acoustic information available to its sonar

imaging system. Bat sonar signals fall broadly into two

categories, constant frequency (CF) and frequency mod-

ulated (FM), see Figure 1a. Species using CF-FM signals

for echolocation typically forage in dense foliage, and

some of these species adjust the frequency of their sonar

vocalizations to compensate for Doppler shifts in return-

ing echoes [10,11]. The CF-FM bat’s Doppler shift

compensation (DSC) serves to cancel a rise in echo

frequency introduced by its own flight velocity and iso-

lates spectral modulations in echoes that come from

fluttering insect wings [12]. In some Doppler shift com-

pensating bats, researchers have identified auditory spe-

cializations, which give rise to heightened sensitivity and

frequency selectivity in the spectral region of the bat’s CF

signals [13]. By contrast, many FM-bats forage in the

open or at the edge of forests, using shorter duration,

broadband signals that are well suited for three dimen-

sional (3-D) target localization and for separating figure

and ground. FM-bats can discriminate differences in echo

delay, the cue for target distance, of less than 60 micro-

seconds [1,14], and they use this delay information to

coordinate the timing of sonar vocalizations [15].

As an insectivorous bat flies towards a prey item, the

spectral-temporal features of its sonar vocalizations change

(Figure 1b). The characteristics of sonar emissions have

been used to divide the bat’s insect pursuit sequence into

different phases: search, approach, and terminal buzz [16].

These phases of insect capture represent distinct modes of

action and perception, which provide a valuable system for

empirical research on audiomotor feedback control. More-

over, the temporal patterning of the bat’s echolocation

signals provide explicit data on the timing of vocal–motor
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commands that feed directly back to the auditory system

for spatially guided behavior.

The echolocating bat’s adaptive motor behaviors set a

context and time-frame within which neuronal responses

must operate, and presumably vary, to build representa-

tions of the environment. Therefore, it is plausible that the

time-scales over which echolocation behaviors operate

serve to constrain the time-scales over which neuronal

computations take place. The potential dynamic variation

in neuronal responses can be mediated at the single cell

and network level by processes such as experience-

dependent synaptic plasticity. In this review, we focus on

the temporal parameters of sonar vocalizations and sound

processing as they relate to echolocation behavior in bats.

Auditory processing
The bat’s auditory system receives and processes echoes

in its environment for the task of spatial orientation, but it

is essentially a standard mammalian auditory system.

Many of the same cues used by other species to localize

sound and to process complex patterns of acoustic infor-

mation are exploited by the bat for spatial orientation and

perception by sonar. Binaural cues for sound localization

are used to estimate the azimuthal position of a sonar

target. The bat’s external ear produces changes in the

spectrum of incoming echoes, which creates patterns of

interference that are used by the bat to estimate target

elevation [17]. The bat estimates the third spatial dimen-

sion, target range, from the time delay between the

outgoing vocalization and the returning echo [14], and

FM-bats show extraordinary spatial selectivity along the

range axis [18,19].

Major nuclei comprising the primary auditory pathway

and important feedforward and feedback excitatory and

inhibitory connections are shown schematically in

Figure 2. (For a detailed exposition of commonalties

and differences in auditory pathways and function in

bat species see Fay and Popper [20].) Recent research

findings demonstrate that feedback connections can lead

to time-dependent modifications in the functional process-

ing of auditory stimuli [21]. This in turn has important

consequences for the processing of sequences or combina-

tions of naturally occurring or artificially generated stimuli.

Many neuronal mechanisms operate in the range of 10s to

100s of milliseconds, and act in creating response types

presumably important in processing echolocation infor-

mation. Mechanisms range from the dependence on the

complement of ion currents [22] to the distribution of

inhibitory inputs [23], both of which can be shaped

through experience. In addition, mechanisms exist that

affect neural integration time, such as active conductances,

membrane oscillations [24�] and post-inhibitory rebound

[25], which can modify network-level interactions.

Neural selectivity to temporal parameters of auditory

stimuli has been studied extensively in echolocating bats.

These include selectivity to sound duration, to delay

between pulse-echo sound pairs, and to temporal rates

of sound sequences, all parameters that vary in the vocal

signals produced by foraging bats.

One attribute of echolocation calls is signal duration, a

characteristic that changes markedly as bats approach a

prey item (Figure 1b). Temporal filtering for sound

duration has been reported at different levels of the

auditory pathway and in several bat species [26,27] and

other mammals (mouse: [28]). The underlying mech-

anism for duration-tuned response profiles has been

investigated using neuropharmocological [29,30] and

intracellular recording methods [26]. The response type

appears to be first created at the inferior colliculus (IC),

and is a consequence of the timing between excitatory

and inhibitory converging inputs. More recently by

Figure 1
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Echolocation signal structures. (a) Spectrographic examples of frequency modulated (FM) and constant frequency (CF) signal components used

by echolocating bats. (b) Spectrographic sequence of signals produced by an FM-bat, Eptesicus fuscus and a CF-FM bat, Rhinolophus

ferrumequinum, while pursuing insect prey. Typical of insectivorous echolocating bats, signal repetition rate increases and the duration decreases

as the animal approaches its prey.
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employing a two tone stimulus paradigm that used a

probe tone at the neuron’s best frequency (BF) and best

duration (BD), and a masking (competing) tone with a

nonexcitatory (NE) duration the latency, duration, and

decay of the afferent input inhibition was delineated

[31�]. By manipulating the onset, overlap, and offset of

the probe and masking tone, the time course of inhibition

has been shown to shape BD, the duration tuning char-

acteristics, and first spike latency.

The distance between the bat and sonar target may be

represented by the activity profile in a population of

neurons that respond selectively to two sounds, which

simulate sonar cry and echo, separated by a limited and

biologically relevant range of temporal delays [32,33].

These ‘delay-tuned’ neurons are present in the midbrain

[34–36], thalamus and cortex [37,38]. Delay-tuned neu-

rons, which are likely to be established at the level of the

midbrain [39,40], are sensitive to additional stimulus

dimensions, for example, the absolute amplitude, the

spectral content, and the temporal rate at which a series

of stimulus pairs are presented. Thus, these neurons

may not only encode target distance but also might

potentially encode other stimulus dimensions [41]. A

recent study explored this by using two overlapping

echoes, temporally offset to simulate sonar reflections

Figure 2
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Major connections of the (a) ascending auditory system, and descending auditory corticofugal projections. The dashed box demarcates nuclei of

the superior olivary complex (SOC) that includes the lateral superior olive, the medial; superior olive and the medial nucleus of the trapezoid body.

(b) Selected projections of vocal production circuitry from cited works. Excitatory projections are shown with black lines, inhibitory GABAergic

projections are shown with red lines, inhibitory glycinergic projections are shown with green lines, and connections with as yet unidentified

neurotransmitters are shown with dashed black lines. Abbreviations: CN, cochlear nucleus.
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from closely spaced surfaces [42]. The authors showed

evidence for enhanced responses when pairs of partially

overlapping echoes were presented after a simulated

sonar cry, suggesting a response profile sensitive to both

the temporal and spectral structure of stimuli.

Echolocating bats use sonar returns to localize objects in

azimuth, elevation and distance, leading to the prediction

that auditory neurons show spatial selectivity in 3-D

space. A population of auditory neurons in the intermedi-

ate and deep superior colliculus (SC) of the bat, Eptesicus
fuscus, show 3-D spatial response profiles ([36]; Figure 3a).

In this population of 3-D neurons, echo delay-tuning is

tagged to the azimuth and elevation of a sound source.

The representation of 3-D target location in the SC of the

bat would be important for the coordination of sensory

Figure 3
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(a) Neural recordings from the bat superior colliculus. Echo delay tuned neuron in the bat SC shows a facilitated response to a pulse-echo pair

separated by 12 msec. The response is vigorous at an azimuth of 26 deg contralateral to the recording site but falls off at 39 deg. Abbreviations:

E, echo; P, pulse; PE pulse and echo. (b) Spatial response profiles of two SC neurons that show selectivity to azimuth and delay. (Adapted from [36].)

(c) Sonar vocalizations elicited by electrical stimulation of the SC (1 and 2) and communication calls elicited by stimulation of the PAG (3). Stimulation

current levels are shown in the upper right corner of each example. Spontaneous vocalizations recorded from flying bats (4). Abbreviations: PAG,

periaqueductal gray; SC, superior colliculus (Adapted from [66]).
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and motor signals that drive its acoustic orientation, as

changes in the bat’s echolocation behavior are closely tied

to position [15].

The principal cue bats and other mammals use to localize

the direction of high frequency sound is interaural level

difference (ILD). Neurons that are excited by stimula-

tion of one ear and inhibited by stimulation of the other

ear (binaural response profile created with excitatory/

inhibitory contralateral/ipsilateral inputs [EI]) are thought

to encode ILD. This response type serves as the putative

mechanism for spatial localization among bats; the timing

of convergent excitatory and inhibitory inputs onto these

neurons being crucial in shaping their response patterns.

Timing is also important when one considers the duration

over which the excitation or inhibition lasts, as this can

significantly affect the response of an ILD neuron to

subsequent sounds. This last point has recently been

investigated [43�] by combining extracellular recordings

with iontophoretic application of antagonists, and/or pre-

sentation of a pair of binaural sounds. The persistent

inhibition initiated at the dorsal nucleus of the lateral

lemniscus (DNLL) prevents the DNLL from responding

for a period of time. As many IC cells receive inhibitory

input from DNLL, they are temporarily transformed

from strongly inhibited EI neurons to weakly inhibited

EI, or even monaural, cells when DNLL activity is shut

down. Two clear implications arise, both related to the

temporal aspects of neural processing of multiple sounds.

The first is that EI response properties can change over

time, on the basis of the temporal pattern of binaural

stimulation showing a state dependent response. This is a

consequence of timing and persistence of inhibition in

this network of neurons, and suggests that codes for

spatial localization that are formed on the basis of EI

neuronal responses change with multiple stimuli. The

second implication is a consequence of the loss of the EI

property. When IC inhibitory input is reduced, the EI

cells lose their ILD specificity, and respond to sounds

from a larger in region in space.

Recently, there has been a growing interest in the proces-

sing of acoustic communication signals in the central

nervous system (CNS) of echolocating bats. Interestingly,

auditory regions traditionally studied in the context of

biosonar processing appear to play a role in communication

signal processing. Researchers find that neural responses

to communication signals depend on the temporal–

spectral characteristics of sounds, similar to findings for

biosonar signals. These results suggest that the process-

ing of sounds used for orientation and communication

occurs through overlapping auditory networks [44–46].

Corticofugal modulation
Time-dependent changes in basic auditory neuronal

receptive field parameters have been demonstrated

[47] and recently expanded on in a series of elegant

experiments. The research not only suggests the involve-

ment of the amygdala and cholinergic basal forebrain in

auditory plasticity [48] but also strongly supports a role for

corticofugal (descending projections from the cortex)

modulation in adjusting neuronal receptive field proper-

ties based on the salience of an auditory stimulus. The

effects have been observed at the level of auditory cortical

fields (ACF), medial geniculate body (MGB), IC [49,50],

and the cochlea [51]. Using repetitive acoustic stimula-

tion, fear conditioning, focal electrical microstimulation

of the primary auditory cortex (AI) or IC, or electrical

microstimulation combined with auditory stimulation,

frequency response areas of auditory neurons in bats

can be shifted in an experience-dependent manner.

Neurons with temporal combination-selectivity are also

influenced (delay-tuned: [52,53]; duration-tuned: [54]) at

both cortical and subcortical levels. The observed

changes arise over the course of minutes and can last

from a few seconds to hours [55]. Protocols that involve

associative learning (e.g. electrical foot stimulation,

paired with a conditioning tone stimulus) demonstrate

changes in the receptive fields of AI neurons, which can

last up to 26 h [56]. The time-course and underlying

mechanism of this long-term change in best frequency

(as evaluated using N-methyl D-aspartate [NMDA] ago-

nists and blockers) suggests the involvement of experi-

ence-dependent transcriptionally mediated processes in

order to maintain long-term changes in a neuron’s best

frequency response area [57–59]. The experience-depen-

dent plasticity is observed in both FM [56,60] and CF-

FM emitting bat species [53,61]. Work with similar pro-

tocols suggests that these corticofugal modulations are

likely to generalize to other mammals [62]. The implica-

tion, in our view, is that central and peripheral auditory

processing in bats can be rapidly modulated to adjust the

analysis of auditory signals in the context of changing

vocal patterns and corresponding echoes. The rapid

experience-dependent plasticity clearly demonstrates

that the inputs to neurons putatively involved in process-

ing echolocation information can be dynamically modu-

lated, which permits a shift in their classical receptive

field arrangement. Although these experiments do not

employ echolocation behavior, they do involve processing

in neuronal populations sensitive to sonar calls, and

provide evidence for the potential range of plasticity

possible when the bat is actively engaged in echolocation.

Motor production
The behavioral context within which bats echolocate

plays a central role in shaping the parameters of sonar

vocalizations. Sonar vocalizations produced by bats dur-

ing insect pursuit show considerable variation in duration,

bandwidth, spectral content, and temporal patterning

(Figure 1). The species-specific variations in call design,

relative motion of the bat with respect to its target, changes

in call structure and temporal patterning all influence

the information available to the bat’s auditory system.
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Using electrical and chemical microstimulation techni-

ques, several brainstem regions involved in sonar vocal

production have been studied. Experiments have focused

on midbrain regions, identifying cytoarchitectural regions

that elicit vocalizations and their interconnections. In the

midbrain the paralemniscal tegmentum area (PLa), peri-

aqueductal gray (PAG), reticular formation, parabrachial

nucleus (PB), SC, and their direct or indirect projections

to brainstem nucleus retroambiguus (RA) and nucleus

ambiguus (NA) have been elucidated [63–65,66�].

Researchers have proposed that sonar vocal production

has evolved from vocal communication pathways [67].

Recent work [68�] has identified dual pathways for the

production of sonar and communication calls at the mid-

brain level in the neotropical FM bat, Phyllostomus dis-
color. One pathway, encompassing medial loci in the

ventral PAG, elicits classes of communication calls fol-

lowing chemical stimulation using dialysis of non-lesion

concentrations of kainic acid. A second pathway involves

a locus in the lateral PAG and the PLa, both eliciting

sonar vocalizations when electrically and chemically sti-

mulated. This experiment is the first to show a dual role

for the PAG, a region considered to be mandatory in the

vocal production pathway for communication calls [69].

Experiments that investigate audio–vocal interactions in

the midbrain PLa show that the PLa can contribute to

timing aspects of sonar vocalizations; however, lesions of

the PLa do not eliminate the ability to produce sonar

vocalization [70], which suggests that it is not a mandatory

component of sonar vocal circuitry. Recent experiments

studied the role of the PB in sonar vocalizations in the CF-

FM bat, Rhinolophus ferrumequinum [71]. Using ionto-

phoretic application of g-amino butyric acid (GABA)ergic

and L-glutamate agonists and antagonists, the authors

demonstrated that the PB plays a role in the control of call

frequency. Application of muscimol (GABAA agonist) or

CNQX (6-cyano-7-nitroquinoxaline-2,3-dione; a gluta-

matergic anatagonist) lowered the call frequency emitted

at rest and during DSC behavior. Conversely, excitation

induced by application of a-amino-3-hydroxy-5-methyl-

4-isoxazole propionic acid (AMPA) or by blocking inhibi-

tion using BMI (bicuculline methiodide, a GABAA

antagonist) increased sonar call frequencies.

The PB study of the horseshoe bat is the first to demon-

strate midbrain control over production of sound fre-

quency [71]. Stimulation experiments in other midbrain

sites have only reported influences on the timing and

number of sonar vocalizations but not specifically the

spectral content. Site-dependent spectral characteristics

of electrically elicited vocalizations have been reported

for the anterior cingulate cortex (ACC) in another CF-

FM bat species, Pteronotus parnellii [72]. Electrical micro-

stimulation of the ACC elicited sonar vocalizations in

rostral ACC, whereas microstimulation of more caudal

ACC regions elicited communication sounds. In the case

of PB microstimulation [71], control of the amount of

excitation and inhibition more crucially impacts the

frequency in the emitted CF component of the sonar

vocalization.

Adaptive behaviors to dynamic stimuli require the inte-

gration of sensory information with motor programs to

guide appropriate responses, and a wealth of data suggests

that the midbrain SC plays a role in sensorimotor integra-

tion. In individual species, the functional organization of

the SC reflects the importance of a particular sensory

modality to an animal’s goal-directed orienting responses.

In bats, control of vocal signals is an integral part of its

acoustic orienting system. It is, therefore, not surprising

that microstimulation of the bat SC elicits head and pinna

movements, along with the production of sonar vocaliza-

tions (Figure 3b; [66�,73]). Consistent with this result,

premotor bursts are recorded from the bat SC before each

sonar vocalization [74].

Combined, these studies suggest that a complex circuit of

interconnected nuclei serve to control the timing and

spectro-temporal parameters of sonar vocalizations. Most

of these regions receive projections from auditory nuclei,

and they may have evolved from areas involved in the

production of communication calls [67,72].

Conclusions
As the echolocating bat orients in the environment and

pursues insect prey, its sound production patterns adapt

to changing acoustic information [2,3,15]. These adap-

tive vocal production patterns provide a window to the

information sought and collected by the active sonar

system for acoustic imaging under different task condi-

tions. Researchers have taken advantage of the signals

recorded from echolocating bats engaged in behavioral

tasks to employ biologically relevant stimuli for studies

of auditory information processing in the brain. The

dynamic patterning of the bat’s sonar vocalizations estab-

lishes a time scale for studying echo processing, both at

the level of individual sounds and across sequences of

sounds. Researchers have also begun to study pre-motor

areas that are involved in sonar production. A complete

understanding of the neurobiology of bat echolocation,

however, requires detailed CNS studies of the bat

actively engaging in vocal–motor behaviors that result

in sonar echo returns.
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